在您需要的时候,以您需要的方式分析您的生物学数据
通过了解疾病的分子机制,优化药物发现、加速研究进程。利用高质量的系统生物学情报与分析,生成有关生物标志物、靶点和作用机制的假设。
建模和了解疾病通路
由博士/医学博士级别的专家人工整理的详细数据,助您评估您的药物对疾病通路可能产生的潜在影响,并探究其因果机制。
生物关系洞察和可视化
构建不受规模和数据类型限制的网络,以理解并直观呈现生物关系及分子互作,并标注其机制、方向和效应。
识别和验证靶点与生物标志物
利用一个涵盖所有关键数据的综合来源,探索您关注的生物主题所涉及的生物学、化学和疾病背景。
以对您和您的组织最有意义的方式访问所需的关键数据
灵活获取高质量的关键数据
通过 R 脚本库、API 或直接集成等方式,将数据直接整合到您的内部系统。
几分钟内即可探索数据的生物学意义
利用配套工具 Key Pathway Advisor,预测关键的蛋白质活性扰动,这可能会是您在数据中观察到的变化的根源所在。
获取最佳的系统生物学研究方法
我们的药物发现计算生物学方法(Computational Biology Methods for Drug Discovery)项目,侧重于采用前沿技术和方法,对组学(OMICs)数据进行网络和通路分析。
想了解更多?
请联系我们,了解 Cortellis 解决方案 MetaBase。
400 万+
1,500 +
10,000+
1,000+
Search Clarivate
Fraud Warning
Please be advised that recently there have been fraudulent job offers and interviews using the Clarivate name, logo and even names of our colleagues.
Please be aware that Clarivate will:
- Never ask for payment of any kind as part of our hiring or onboarding processes
- Never ask an applicant to email sensitive personal information, such as a Social Security Number, birthdate, credit card or bank account information
- Never issue pre-employment checks to purchase office supplies
- Never ask you to pay up for an external course and upskill
If you have any question about a position posted in our company name, please check our current open positions on the Clarivate website Careers pages or contact one of our recruiting team members directly.
If you have been the victim of a scam, please contact your local law enforcement agency.
Federal Transparency In Coverage Rule
This link leads to the machine-readable files that are made available in response to the federal Transparency in Coverage Rule and includes negotiated service rates and out-of-network allowed amounts between health plans and healthcare providers. The machine-readable files are formatted to allow researchers, regulators, and application developers to more easily access and analyze data.
